
STAT0041: Stochastic Calculus

Lecture 14 - Ornstein–Uhlenbeck Process and Langevin Dynamics
Lecturer: Weichen Zhao Fall 2024

Key concepts:

• Ornstein–Uhlenbeck semigroup;

• Langevin dynamics.

14.1 Ornstein–Uhlenbeck Process

Recall Ornstein–Uhlenbeck processes

dXt = −bXtdt+ σdBtX0,

which solution is

Xt = X0e
−bt + σe−bt

∫ t

0

ebsdBs

In this lecture we consider following specific OU process

dXt = −Xtdt+
√
2dBt. (14.1)

which solution is

Xt = e−tX0 +
√
2e−t

∫ t

0

esdBs

= e−tX0 + e−tBe2t−1

= e−tX0 +
√
1− e−2tz z ∼ N(0, 1)

∼ N(e−tX0, 1− e−2t)

Ornstein–Uhlenbeck Operator. The generator of OU process (14.1) is

LOUf = −x · ∇f +∆f,

and adjoint generator is

L∗
OUg = ∇ · (xg) + ∆g
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Solving equation L∗
OUπ = 0 we have the invariant measure

dπ(x) ∝ e−
1
2
x2

dx

of OU process (14.1), which is the standard Gaussian measure on Rn.

Ornstein–Uhlenbeck Semigroup. From the solution of OU process (14.1)

Xt = e−tX0 +
√
1− e−2tz z ∼ N(0, 1)

we have the transition function

p(t, x, y) =
1√

2π(1− e−2t)
exp

(
−(y − xe−t)2

2(1− e−2t)

)
.

Then the transition semigroup is

Ptf(x) = E[f(Xt) | X0 = x] =

∫
f(y)p(t, x, dy)

= E[f(e−tx+
√
1− e−2tz)] z ∼ N(0, 1)

=

∫
f(e−tx+

√
1− e−2tz)dπ(z)

which is called Ornstein–Uhlenbeck Semigroup

Kolmogorov Equations

Kolmogorov backward equation:

∂

∂t
Ptf(x) = LOUPtf(x) = −x · ∇Ptf(x) + ∆Ptf(x)

Fokker-Planck equation:

∂tµ(x, t) = L∗
OUµ(x, t) = ∇ · (xµ(x, t)) + ∆µ(x, t)

14.2 Langevin Dynamics

Definition 14.1 (Langevin Dynamics) Given potential function V (x), Langevin dynam-
ics is the following SDE

dXt = −∇V (Xt)dt+
√
2dBt. (14.2)

which solution is called Langevin Diffusion.
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The generator of Langevin diffusion is

LLDf = −∇V · ∇f +∆f,

and adjoint generator is
L∗

LDg = ∇ · (g∇V ) + ∆g

Kolmogorov backward equation:

∂

∂t
Ptf(x) = LLDPtf(x) = −∇V (x) · ∇Ptf(x) + ∆Ptf(x)

Fokker-Planck equation:

∂tµ(x, t) = L∗
LDµ(x, t) = ∇ · (µ(x, t)∇V (x)) + ∆µ(x, t)

Proposition 14.2 The invariant measure of Langevin diffuison

dXt = −∇V (Xt)dt+
√
2dBt

is
dπ(x) ∝ e−V (x)dx.

Remark 14.3 In fact, for all given p(x), we can write it as

p(x) = e− log(−p(x)).

It suggests that we can construct Langevin diffusion with invariant measure p(x) by well
potential function V (x). That is we can generate sample XT ∼ p(x) from sample X0 which
law is an arbitrary distribution by iterating through Langevin dynamics.

Besides being concerned with the form of the invariant measure of Langevin diffusion, another
issue of great interest to us is the rate at which it converges to invariant measure. We begin
with giving the mathematical quantity that characters the distance between distributions

Definition 14.4 (Wasserstein distance) 2-Wasserstein distance between probability mea-
sures µ and ν is defined as

W2(µ, ν) := inf
γ∈C(µ,ν)

(∫
∥x− y∥2γ(dx, dy)

) 1
2

. (14.3)

where C(µ, ν) is the set of all couplings of µ and ν. We say γ is a coupling of µ and ν, if its
marginal on the first variable is µ and its marginal on the second is ν.

We say a measure µ is α-strongly log-concave if µ ∝ e−V with V being α-strongly convex,
that is

∇2V ⪰ αI.

Theorem 14.5 Let {Xt} be generated according to the Langevin diffusion with initialization
X0 ∼ µ0 and stationary measure µ ∝ e−V . Assume µ is α-strongly logconcave, then

W 2
2 (µt, µ) ≤ exp(−2αt)W 2

2 (µ0, µ).


